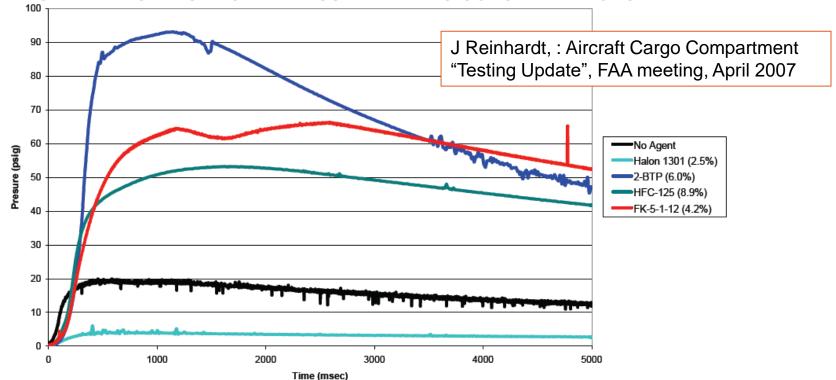
INERTING TESTING WITH CF3I AND BLENDS WITH OTHER AGENTS

BLENDS TESTED: HFC-125, FK-5.1.12 AND SOLSTICE 1233ZDE

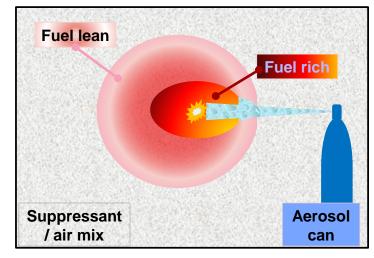
INTRODUCTION

WHY ARE WE CARRYING OUT INERTING TESTS?


- The FAA Aerosol Can Test
- One of the four elements of the FAA Minimum Performance Standard (MPS)
- Devised to simulate the effects of an aerosol can test containing hydrocarbon propellant exploding in a cargo fire situation, and damaging cargo liners
- Mixture of propane, ethanol & water sprayed across continuously sparking electrodes
- In general agents such as halon 1301 inert this test at a certain concentration which defines their low-rate discharge (LRD) concentration.
- However some halon replacement agents when tested at below their inerting concentration actually made the aerosol can explosion test (ACT) worse, in that higher pressures were developed.

INTRODUCTION 2

REPLACEMENT AGENTS TESTED AT SUB-INERTING CONCENTRATIONS



INTRODUCTION 3

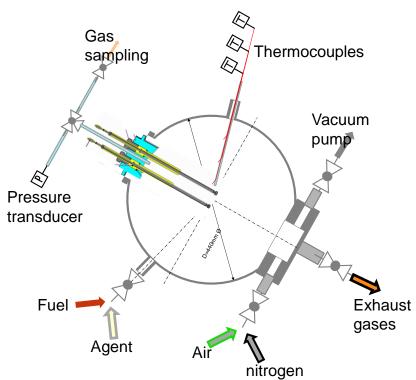
ISSUES WITH THE FAA AEROSOL CAN TEST

- Full-Scale Test; slow and expensive, not an R&D test
- Uneven fuel distribution (fuel rich near spark, fuel lean further away) means variable stoichiometry.
- Conditions are difficult to control and repeat;
 modelling of the event is complicated.
- In real life, homogeneous suppressant distribution and concentration are not guaranteed:
- Air leakage / ventilation of cargo hold.
- Distribution obstructed by cargo / containers

DEVELOPMENT OF A SCREENING TEST

INFORMATION WANTED

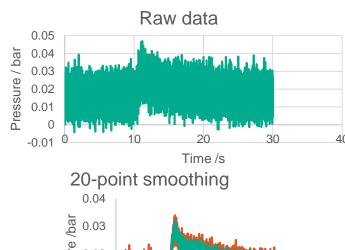
- Performance of agents at various sub-inert concentrations and air/fuel ratios (lean, rich & stoichiometric)
- How to achieve this?
- Back to basics; single fuel tested in more controlled environment
- Propane (gaseous) is easier than ethanol to use
- Kidde devised a test based on internationally accepted Standards to create an easily reproducible screening test which can test small quantities of agent quickly and safely
- This was presented previously at the FAA Meeting in Bremen (May 2014): https://www.fire.tc.faa.gov/pdf/systems/May14Meeting/Gatsonides-0514-HalonAlt.pdf

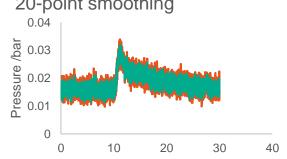


DEVELOPMENT OF A SCREENING TEST

USE OF SMALL SCALE TEST TO PREDICT PERFORMANCE IN AEROSOL CAN TEST

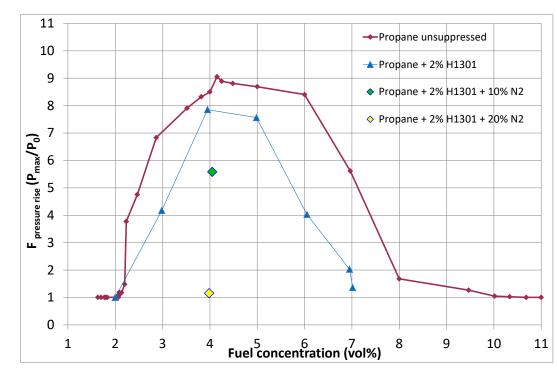
Kidde 43 L Inerting Sphere





TEST METHODOLOGY

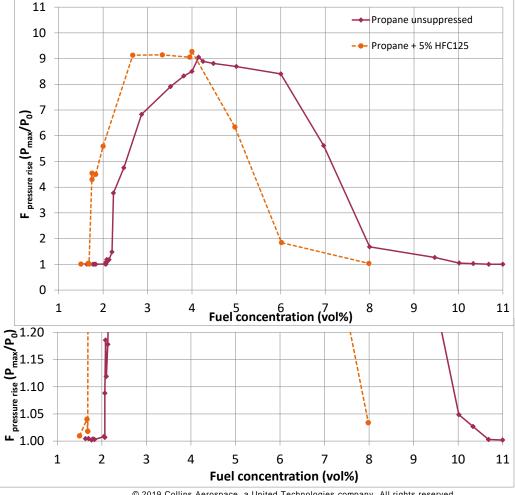
- Sphere evacuated, propane, agent(s) added stepwise by partial pressure
- Air introduced to achieve 1 atmosphere
- Wait 10 minutes for equilibrium (heat sphere if necessary to disperse less volatile agents)
- Start high speed DAQ
- Discharge igniter for 1 second
- Record results, evacuate and purge sphere
- If testing near pass fail criterion pressure rises are small, so signal noise is an issue
 - 20 point smooth in Excel cleans the data


© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RESULTS

UNSUPPRESSED PROPANE AND HALON BASELINE

- 2% halon 1301 is approx. 0.3x inerting concentration
- Mitigates propane explosion pressure (peak pressure and flammability limits)
- Additional nitrogen (10% and 20%) aids further suppression
- In other words halon 1301 is behaving as in the FAA ACT in not making the explosion worse



RESULTS

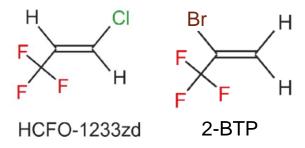
HFC-125 TESTING

- Recall that HFC-125 exacerbated the ACT at sub-inerting concentrations
- 5% HFC125 is approx. 0.3x inerting concentration
- Shift to lean side of flammability curve for propane indicates that a low % HFC125 combined with a low % propane acts as fuel
- Above stoichiometric concentration, HFC-125 mitigates flammability as if an overly rich mixture is achieved
- The enhancement at or near the lean limit seems to be following the ACT!

Collins Aerospace

RECENT WORK

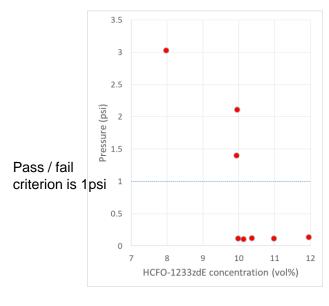
CF3I, SOLSTICE-1233ZDE
BLENDS OF AGENTS
AND PREDICTION OF PASS / FAIL CRITERIA FOR FAA ACT

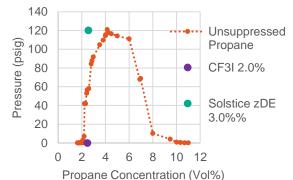


TESTS CARRIED OUT

PURE AGENTS

- Two new agents have been tested:
- CF3I
 - Blend of CF3I and HFCs being proposed in the refrigeration industry (R466A: CF3I, HFC-32 and HFC-125)
 - Renewed interest in CF3I as a cargo compartment agent


- Solstice 1233zdE
 - New Low-GWP HCFO agent,
 - Intended for foam-blowing and solvent applications
 - Structural similarity to 2-BTP
 - Likely to fail ACT, but low molecular weight might make it interesting in blends



RESULTS OBTAINED

PURE AGENTS

- Peak Inerting Concentrations
 - Test carried out at 4.0% propane
 - CF3I Inerting concentration for propane validated at 6.5%
 - Solstice inerting concentration measured to be 10.0%
- Behaviour at sub-inerting concentration (at 2.5% propane)
 - CF3I at 2.5% did not enhance the explosion
 - As expected, CF3I behaving like halon 1301 as an inerting agent
 - Solstice-1233zdE at 3.0% enhanced the explosion significantly
 - As predicted due to its structural similarity to 2-BTP

TESTING WITH BLENDS

BLENDS

- When evaluating blends of a "flammable" agent and a non-flammable agent there are two questions that need to be answered:
 - 1. What is the minimum proportion of the non-flammable agent that prevents the enhancement of the propane-air explosion on the lean side?
 - 2. Having established the minimum proportion of the non-flammable agent, what is the inerting concentration of the blend at peak flammability (i.e. 4vol% for propane-air)?
- Blends tested: CF3I with
 - HFC-125, FK-5.1.12 and Solstice 1233zdE

BLENDS OF CF3I AND HFC-125

- Answering question 1:
- Ratio of 0.40 fails, whereas 0.50 passes
- So a possible blend is 1:2
 CF3I :HFC-125
- Answering Question 2:
- 3.75% CF3I/7.5% HFC-125 is lowest quantity that passes

Propane (Vol%)	CF3I (Vol%)	HFC-125 (Vol%)	Ratio (CF3I:HFC -125	Pressure (psig)
2.57	1.96	5.02	0.40	59.2
2.65	4.11	5.12	0.80	0.3
2.50	3.05	5.13	0.61	0.3
2.48	2.51	4.94	0.51	0.4
2.45	0.99	2.01	0.50	0.3

Propane (Vol%)	CF3I (Vol%)	HFC-125 (Vol%)	Ratio	Pressure (psig)
3.9	3.08	5.30	0.58	3.5
4.0	3.87	6.97	0.56	0.4
4.4	3.26	6.64	0.50	1.5
3.9	3.45	6.92	0.49	2.2
4.0	3.76	7.51	0.50	0.2
4.1	3.18	7.03	0.46	2.0

BLENDS OF CF3I AND NOVEC 1230

- Answering question 1: what is optimum ratio of CF3I/Novec 1230?
- 0.95 (~1)fails, whereas 1.25 passes
- So a possible blend is 5:4 CF3I: Novec 1230

Propane (Vol%)	CF3I (Vol%)	Novec (Vol%)	Ratio	Pressure (psig)
2.5	2.0	2.1	0.95	68.5
2.4	3.0	2.2	1.36	0.1
2.4	2.5	2.0	1.25	0.1

- Answering Question 2: What is peak inerting concentration of this blend?
- 4.4% CF3I/3.5% Novec is lowest quantity that passes

Propane (Vol%)	CF3I (Vol%)	Novec (Vol%)	Ratio	Pressure (psig)
4.0	4.4	3.5	1.25	0.2
4.0	3.8	3.0	1.25	2.7
4.0	4.0	3.3	1.21	2.8
4.0	4.1	3.3	1.25	2.8
4.0	4.2	3.4	1.25	2.8
4.0	4.3	3.5	1.24	0.5

BLENDS OF CF3I AND SOLSTICE 1233ZDE

- Answering question 1:
 - Ratio of 1.25 chosen as starting point
 - This result is not as good as Novec 1230 (0.1 psi) so we are close to the limit
 - So a possible blend is 5:4 CF3I:
 Solstice zdE
- Answering Question 2:
 - 4.4% CF3I/3.5% Solstice zdE is lowest quantity that passes

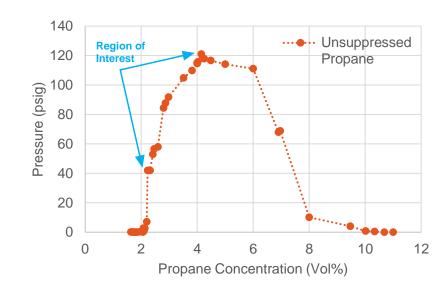
Propane	CF3I	1233 zDE	Ratio	Pressure
(Vol%)	(Vol%)	(Vol%)		(psig)
2.43	2.51	1.95	1.29	4.06

Propane (Vol%)	CF3I (Vol%)	1233 zDE (Vol%)	Ratio	Pressure (psig)
3.96	4.29	3.45	1.24	5.33
3.92	4.32	3.42	1.26	2.74
3.98	4.40	3.56	1.24	1.52
3.41	4.43	3.56	1.24	0.88
3.98	4.39	3.50	1.25	0.22
3.95	4.24	3.37	1.26	1.58
3.97	4.37	3.52	1.24	0.22

SUMMARY

BLENDS COMPARED

- 5:4 mixture CF3I / HCFO-1233zdE appears promising in weight / volume terms
 - Low density of HFC-125 impacts volume
 - · High MW Novec impacts weight and volume
- Benefits of blend with Solstice :
 - Blend could mitigate the toxicity effects of CF3I by almost a factor of 2
 - Minimal weight/volume impact compared to Halon 1301
 - Agent cost benefits?
- More testing required


	Agent or Blend*	Inertin	g Qty.	Ratio to	Halon	Ratio t	o CF3I
		kg/m³	L/m ³	Mass	Volume	Mass	Volume
	Halon 1301	0.408	0.265	1	1	0.73	0.99
	CF3I	0.562	0.268	1.38	1.01	1	1
)	CF ₃ I / HFC-125 1:2	0.726	0.302	1.78	1.84	1.29	1.83
	CF ₃ I / Novec 1230 5:4	0.862	0.302	2.11	1.82	1.53	1.80
	CF ₃ I / HCFO-1233 5:4	0.567	0.302	1.39	1.24	1.01	1.23

REFINING THE SCREENING TEST

PREDICTION OF PERFORMANCE IN ACT

- Having established blends that are not likely to make ACT worse, can we devise a test to predict Pass / Fail criterion?
- The ACT has an overall "severity" somewhat less than stoichiometric propane / air
- There ought to be a propane / air ratio that has similar severity to the ACT
- Evaluate performance of halon 1301 (3%)
 against various concentrations between LFL
 (~2% propane in air) and peak limit (4%
 propane in air)
- Use this concentration to test new agents

REFINING THE SCREENING TEST

PREDICTION OF PERFORMANCE IN ACT

- Testing with Halon 1301 various propane / air stoichiometry were evaluated such that 3% halon could successfully suppress the explosion but less than 3% could not
- 3.3% Propane /Air was chosen
- The concentration was then selected to evaluate CF3I.
- 3.2% CF3I appears to be equivalent to 3% Halon 1301 in its ability to control a fuel lean propane / air explosion
- Suggests that this concentration should also control Aerosol Can Test

#	Test	Propane %	CF3I %	Pressure / bar	Pressure / psi
83	Propane 3.3% CF3I 3.2%	3.34	3.23	0.018	0.3
84	Propane 3.3% CF3I 3%	3.34	3.01	0.209	3.0

SUMMARY & CONCLUSIONS

- Testing agents at fuel—lean stoichiometry in the 42 L Sphere mimics behaviour in the full scale FAA ACT
 - Stable Agents (halon 1301, CF3I) control at sub-inerting concentrations
 - Less Stable agents (HFC-125, Novec 1230, Solstice zdE) do not
- Blends of stable and less stable agents can be created that can control the ACT
 - One blend in particular (CF3I/Solstice) appears attractive in weight terms
- Testing at intermediate propane air concentrations appears to offer a screening test to define likely pass / fail criteria for the full scale aerosol can test
 - CF3I at 3.2% should be capable of passing the Aerosol Can Test

ACKNOWLEDGEMENTS

- Co workers at Kidde
 - Josephine Gatsonides set up the original test at Kidde Research in the UK
 - Terry Simpson useful discussions and suggestions for blends
 - Travis McCue, Harlan Hagge assisting with the tests
 - Bob Royer, Jerry Jackson, the technicians who actually carried out the tests
- Honeywell providing the Solstice 1233zdE

